
Development and Architecture of REFPERSYS
A Multi-Threaded REFlective PERsistent SYStem for AI

Basile Starynkevitch1 and Abhishek Chakravarti 2 and Nimesh Neema3
refpersys.org

Abstract.
The technical progress of computing hardware, especially with the

prevalence of multicore systems and large amounts of RAM, now
allows us to further experiment with the Artificial General Intelli-
gence goals inspired by the works of pioneers such as J. Pitrat[10,
9, 11]. Our project is exploring the development, through the use
of metaprogramming approaches, a bootstrapped multithreaded, re-
flexive and orthogonally persistent Quine system running on modern
Linux x86-64 hardware, leading to a declarative knowledge-based
language.

Topics : Knowledge Representation and Reasoning, Machine
Learning, Multidisciplinary Topics and Applications, Agent-based
and Multi-agent Systems, Semantic Technologies.

1 MOTIVATIONS
A symbolic AI software system running on LINUX nowadays needs
to manage a large amount of information and knowledge organized
as some complex graph (also known as an ontology [8], a seman-
tic network [17], or a frame [1, 7]) inside the computer memory. This
large graph should be orthogonally persistent [4] (such as in BISMON

[15]) on disk, and be loaded from files at startup time on mornings of
worked days, and later dumped to disk, as a set of state files in HJSON

format, before normal termination when leaving office at evening.
Having these files in a textual format facilitates their management
with existing distributed version control systems such as git or soft-
ware development forges like gitlab and ensures some data porta-
bility. Carefully generating the runtime, through metaprogramming
approaches, as C++ code (à la GCC MELT [14] that is subsequently
compiled by g++ into dlopen-ed plugins4 provides some amount
of code portability. Current desktop computers are powerful enough
to keep a large memory heap in RAM5, and this entire heap can be
persisted on disk, similar to how database management systems such
as SQLITE or NoSQL work.

Current processors are multi-core, so running a good enough
multi-threaded program on them [3] should be beneficial for perfor-

1 Bourg La Reine, France, email: basile@starynkevitch.net
2 Kolkata, India, email: chakravarti.avishek@gmail.com
3 Indore, India, email: nimeshneema@gmail.com
4 In practice, as demonstrated by the manydl.c sample code written for

J. Pitrat, on github.com/bstarynk/misc-basile/, several hun-
dreds of thousands of *.so plugins can be generated and then dynamically
loaded by dlopen at runtime on LINUX desktops.

5 Notice that the millions of SLOC for mature software (such as the GCC
compiler, the QT GUI toolkit, or the POSTGRESQL database), fits entirely
in the 64 GB RAM of a powerful desktop. But compiling such a code base
takes hours of computer time.

mance. Backtracing libraries such as I. Taylor’s libbacktrace
facilitate introspection of the current thread’s call stack, if the C++
code has been compiled, using g++ -O2 -g, with DWARF debug-
ging information. JIT-compiling libraries (such as libgccjit) can
produce plugins without the need of a textual representation of some
AST of the code.

2 THE REFPERSYS ROADMAP

2.1 A Staircase Development Model

REFPERSYS development model is similar to a staircase, as depicted
in Figure 1, unlike the traditional spiral development model [2]. The
floor of the staircase is just a C++ hand-coded persistent system, and
we gradually add new code implementing more features (first en-
tirely hand-written, later more and more parts of it being replaced by
REFPERSYS generated code). We are progressively replacing exist-
ing hand-written code (or low-level DSL) by more a expressive and
generated one. So we will continuously rewrite past formalizations
as more clever and expressive ones, taking increasing advantage of
REFPERSYS system-wide introspective and metaprogramming abil-
ities.

initial persistent refpersys
feature1version1feature2version2

feature3
version3
feature4

version4
feature5

version5

feature4

feature6

version6

feature7

feature
24

version24

ve
rsi

on
23

Each new feature -or small incremental change or a few of them
(small git commits) - of REFPERSYS enables us to build
and generate the next version of REFPERSYS, and a next fea-
ture is then added to that improved version, and so on repeat-
edly, etc....

Figure 1. the strange REFPERSYS staircase development model (from a

figure of Spiral stairs by Lluisa Iborra from the Noun Project)

http://refpersys.org/
http://hjson.org/
http://git-scm.com
http://gitlab.com/
http://sqlite.org/
https://en.wikipedia.org/wiki/NoSQL
mailto:basile@starynkevitch.net
mailto:chakravarti.avishek@gmail.com
mailto:nimeshneema@gmail.com
http://github.com/bstarynk/misc-basile/
https://github.com/ianlancetaylor/libbacktrace
https://gcc.gnu.org/onlinedocs/jit/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://thenounproject.com/term/spiral-stairs/956427/

So the REFPERSYS project is taking a bootstrapping approach
[9, 10, 5] : progressively old code (perhaps even hand-written, or
generated) is replaced by “better” code emitted by metaprogramming
techniques from higher level formalizations.

2.2 Initial Architecture of REFPERSYS

The initial architecture6, prototyped in C++17, of REFPERSYS is
close to BISMON’s one. But it should evolve very differently. Our
persistent and garbage-collected [6] heap is made of values. Most
values are immutable and rather light. Some values are mutable ob-
jects, which are quite heavy, since synchronized between threads
so carrying their read-write lock. Values are represented in 64 bits
machine words: either a tagged integer, or containing a pointer to
some aligned memory zone. Most values are persistent—so dumped
then later reloaded through state files—but some are transient, since
it makes no sense to keep them on disk. Transient values, often
transient objects, include reification of GUI windows or Web wid-
gets, HTTP connections, ongoing processes, in particular compila-
tion commands of newly generated plugins, etc.. Values are both or-
dered and hashable, so fit nicely inside standard C++ containers like
std::set or std::unordered map. Every mutable object has
a globally unique, fixed, and random objid, which fits in 16 bytes
and is textually represented—in state files—with a string such as
7VnQtHZ63pA02rCekc.

Immutable values include UTF-8 strings, boxed IEEE 64 bits floats
without NaN to stay ordered, tuples of references to objects, ordered
sets of objects, closures -whose code is represented by some object,
and with arbitrary values as closed values-, and immutable instances.

Mutable objects carry their constant objid, their lock, their class
-which could change at runtime and is an object-, attributes, com-
ponents, and some optional smart std::unique ptr pointer to
the payload of that object. An attribute associates a key -itself
some object reference- to a value, so attributes are collected in
some mutable C++ std::map. The components are organized as a
std::vector of values. The payload belongs to its owning object
and carry extra data, such as mutable hashed sets, class information
-sequence of superclasses and method dispatch table-, string buffers,
opened file or socket handles, GUI or widgets etc..

REFPERSYS will initially have an ad-hoc IDE—built with the
FLTK toolkit—to just fill the persistent heap and generate some of
its C++ code. This IDE will support the syntax highlighting, auto-
completion and navigating of objects through their objids.

3 METAPROGRAMMING IN REFPERSYS

An essential insight of REFPERSYS is metaprogramming, practically
done by generating C++17 code at runtime for a Linux system. This
is strongly inspired by previous work, see [9, 10, 15, 14, 13]. The
choice of the actual programming language used to generate code7 in
within REFPERSYS is mostly arbitrary and guided by non-technical
concerns: which programming language is known to all the REFPER-
SYS team, while being compatible with a lot of existing open source

6 The GPLv3+ code of BISMON, mostly in C, is avail-
able on github.com/bstarynk/bismon/. But REF-
PERSYS is coded in C++, only for LINUX/X86-64, on
gitlab.com/bstarynk/refpersys and share almost no code
with BISMON.

7 In practice, some C++ code is emitted in a file similar to
/tmp/generated.cc, compiled as a plugin by forking g++ -O
-g -fPIC -shared into a /tmp/generated.so, which is later
dlopen-ed, all by the same process running the ./refpersys exe-
cutable.

libraries and APIs? That programming language happens to be C++
(better than C, because of its containers; also used in TENSORFLOW

or GHUDI), but our expansion machinery is inspired by MELT code
chunks [14], LISP macros [12] or DJANGO templates, driven by “ex-
pert system”-like meta rules (such as in [9]) potentially applicable to
themselves.

4 CONCLUSION
We have discussed how we are trying to develop REFPERSYS or-
ganically, using metaprogramming techniques to eventually build a
fully bootstrapped Quine system. Our approach is to gradually re-
place hand-written code with increasingly expressive generated code,
relying on the growing metaprogramming and reflective properties of
the system. See also [16].

ACKNOWLEDGEMENTS
Thanks to François Bancilhon for proof-reading this draft.

REFERENCES
[1] Daniel G. Bobrow and Terry Winograd, ‘An overview of KRL, a knowl-

edge representation language’, Cognitive Science, 1(1), 3–46, (1977).
[2] Barry W Boehm, ‘A spiral model of software development and en-

hancement’, Computer, 61–72, (1988).
[3] David R Butenhof, Programming with POSIX threads, Addison-Wesley

Professional, 1997.
[4] Alan Dearle, Graham N. C. Kirby, and Ronald Morrison, ‘Orthogonal

persistence revisited’, CoRR, abs/1006.3448, (2010).
[5] Carolina Hernández Phillips, Guillermo Polito, Luc Fabresse, Stéphane

Ducasse, Noury Bouraqadi, and Pablo Tesone, ‘Challenges in Debug-
ging Bootstraps of Reflective Kernels’, in IWST19 - International work-
shop on Smalltalk Technologies, Cologne, Germany, (August 2019).

[6] Richard Jones, Antony Hosking, and Eliot Moss, The garbage collec-
tion handbook: the art of automatic memory management, Chapman
and Hall/CRC, 2016.

[7] Douglas B Lenat, ‘Theory formation by heuristic search: The nature of
heuristics ii: background and examples’, Artificial Intelligence, 21(1-2),
31–59, (1983).

[8] Antonio De Nicola, Michele Missikoff, and Roberto Navigli, ‘A soft-
ware engineering approach to ontology building’, Information Systems,
34(2), 258 – 275, (2009).

[9] Jacques Pitrat, ‘Implementation of a reflective system’, Future Gener-
ation Computer Systems, 12(2), 235 – 242, (1996).

[10] Jacques Pitrat, Artificial Beings: The Conscience of a Conscious Ma-
chine, Wiley ISTE, 2009.

[11] Jacques Pitrat, ‘A step toward an artificial artificial intelligence scien-
tist’, Technical report, CNRS and LIP6 Université Paris, (2009).

[12] Christian Queinnec, Lisp in Small Pieces, Cambridge University Press,
New York, NY, USA, 1996.

[13] Basile Starynkevitch, ‘Multi-stage construction of a global static an-
alyzer’, in GCC summit, pp. 143–152, Ottawa, Canada, (july 2007).
GCC.

[14] Basile Starynkevitch, ‘MELT - a translated domain specific language
embedded in the GCC compiler’, in DSL2011 IFIP conf., Bordeaux
(France), (September 2011).

[15] Basile Starynkevitch, ‘Specialized static analysis tools for more secure
and safer IoT software development. bismon documentation’, Technical
report, CEA/LIST, (oct. 2019). work in progress, H2020 draft deliver-
able.

[16] Basile Starynkevitch, Abhishek Chakravarti, and Nimesh Neema,
‘REFPERSYS high-level goals and design ideas’, Technical report,
refpersys.org, (2019).

[17] R.P. Van De Riet, ‘Linguistic instruments in knowledge engineering’,
in Proc.1991 Workshop on Linguistic Instruments in Knowledge Engi-
neering. North Holland, (1992).

Our draft git ID is fdb271193086e90b...

2

https://github.com/bstarynk/bismon/
https://gitlab.com/bstarynk/refpersys
http://tensorflow.org
https://gudhi.inria.fr/
http://refpersys.org/

	MOTIVATIONS
	THE RefPerSys ROADMAP
	A Staircase Development Model
	Initial Architecture of RefPerSys

	METAPROGRAMMING IN RefPerSys
	CONCLUSION

