
1

Design ideas and implementation issues in
REFPERSYS, an open source reflexive persistent

system
Basile Starynkevitch, Abhishek Chakravarti

Abstract—The technical progress of computing hardware,
especially with the prevalence of multicore systems and large
amounts of RAM, now allows us to further experiment with
the Artificial General Intelligence goals inspired by the works
of pioneers such as J. Pitrat. Our project is exploring the
development, through the use of metaprogramming approaches, a
bootstrapped multithreaded, reflexive and orthogonally persistent
Quine system running on modern Linux x86-64 hardware,
leading to a declarative knowledge-based language.

Index Terms—Agent-based and Multi-agent Systems, Knowl-
edge Representation and Reasoning, Machine Learning, Multi-
disciplinary Topics and Applications, Semantic Technologies.

I. INTRODUCTION

Our complex, but fragile, world is facing dramatic and
extremely challenging planet-wide issues, such global warm-
ing, demographic and political crises, economic and financial
emergencies, and growing inqualities. In the light of such
challenges, Artificial General Intelligence (AGI) systems are
increasingly relevant.

We believe in free software (read also this), and we strongly
believe that an AGI prototype should be some free software,
exactly like most infrastructure software are (notably LINUX).
See also the SOFTWARE HERITAGE project for interesting
insights. REFPERSYS wants to be an AGI infrastructure , and
there is work for many years (several years of work needed
without any “artificial intelligence”, just for the infrastructure).

An even partially successful AGI system might be useful to
coordinate, run and manage other existing software (described
through some knowledge given declaratively). Imagine how
complex future digital twins of the entire planet Earth, de-
signed to tackle with global warming, would need to be. For
such dramatically complex usage, an AGI system (like REF-
PERSYS, if we succeed in making it) could be quite helpful
to just drive and use such a “digital twin” simulation. Making
it free software runnable on a free software operating system
should benefit most of humanity (but keeping it proprietary
won’t), and enable further or alternative experimentations. And
“there is no planet B”. So investing a few persons willing
to working for nearly a decade is not too much for such a
perspective.

A symbolic AI software system running on LINUX nowa-
days needs to manage a large amount of information and

Contacts: basile@starynkevitch.net (Bourg-la-Reine, near Paris,
France) and abhishek@taranjali.org (Kolkata, India), and collectively
team@refpersys.org

knowledge organized as some complex graph (also known
as an ontology DeNicola:2009:OntologyBuilding, a seman-
tic network VanDeRiet:1992:Ling-instr-know, or a frame
Bobrow-Winograd:1977:KRL, Lenat:1983:theory) inside
the computer memory.

This large graph should be orthogonally persistent
Dearle:2010:orthopersist (such as in BISMON
Starynkevitch:2019:bismon-draft) on disk, and be loaded
from files at startup time on mornings of worked days,
and later dumped to disk, as a set of state files in JSON
format, before normal termination when leaving office at
evening. Having these files in a textual format facilitates their
management with existing distributed version control systems
such as git or software development forges like gitlab
and ensures some data portability.

Current desktop computers are powerful enough to keep
a large memory heap in RAM1, and this entire heap can
be persisted on disk, similar to how database management
systems such as SQLITE or NoSQL work.

Current processors are multi-core, so running
a good enough multi-threaded program on them
butenhof:1997:programming should be beneficial for
performance. Backtracing libraries such as I. Taylor’s
libbacktrace facilitate introspection of the current
thread’s call stack, if the C++ code has been compiled,
using g++ -O2 -g, with DWARF debugging information.
JIT-compiling libraries (such as libgccjit) can produce
plugins without the need of a textual representation of some
AST of the code.

A. A Staircase Development Model

REFPERSYS development model is similar to a staircase, as
depicted in Figure 1, unlike the traditional spiral development
model boehm:1988:spiral. The floor of the staircase is just
a C++ hand-coded persistent system, and we gradually add
new code implementing more features (first entirely hand-
written, later more and more parts of it being replaced by
REFPERSYS generated code). We are progressively replacing
existing hand-written code (or low-level DSL) by more a
expressive and generated one2. So we will continuously rewrite

1Notice that the millions of SLOC for mature software (such as the GCC
compiler, the QT GUI toolkit, or the POSTGRESQL database), fits entirely
in the 64 GB RAM of a powerful desktop. But compiling such a code base
takes hours of computer time.

2Currently, as of August 2020, REFPERSYShas 183 lines of generated code
as compared to 17,337 lines of hand-written code.

https://www.fsf.org/about/what-is-free-software
https://www.softwareheritage.org/
https://en.wikipedia.org/wiki/Digital_twin
https://theresnoplanetb.net/
mailto:basile@starynkevitch.net
mailto:abhishek@taranjali.org
mailto:team@refpersys.org
http://git-scm.com
http://gitlab.com/
http://sqlite.org/
https://en.wikipedia.org/wiki/NoSQL
https://github.com/ianlancetaylor/libbacktrace
https://gcc.gnu.org/onlinedocs/jit/
https://en.wikipedia.org/wiki/Abstract_syntax_tree

past formalizations as more clever and expressive ones, taking
increasing advantage of REFPERSYS system-wide introspec-
tive and metaprogramming abilities.

initial persistent refpersysfeature1versio
n1feature2version2feature3version3feature4

version4
feature5

version5

feature4

feature6

version6

feature7

fea
ture2

4
versio

n24

ve
rs

ion
23

Each new feature -or small incremental change or
a few of them (small git commits) - of REF-
PERSYS enables us to build and generate the next
version of REFPERSYS, and a next feature is then
added to that improved version, and so on repeatedly,
etc....

Fig. 1. the strange REFPERSYS staircase development model (from a figure
of Spiral stairs by Lluisa Iborra from the Noun Project)

So the REFPERSYS project is taking a bootstrapping3

approach Pitrat:1996:FGCS, Pitrat:2009:ArtifBeings,
hernandez-phillips:2019:debugging-bootstrap :
progressively old code (perhaps even hand-written,
or generated) is replaced by “better” code emitted
by metaprogramming techniques from higher level
formalizations.

B. Initial Architecture of REFPERSYS

The initial architecture4, prototyped in C++17, of REF-
PERSYS is close to BISMON’s one. But it should
evolve very differently. Our persistent and garbage-collected
jones:2016:gchandbook heap is made of values. Most values
are immutable and rather light. Some values are mutable
objects, which are quite heavy, since synchronized between
threads so carrying their read-write lock. Values are repre-
sented in 64 bits machine words: either a tagged integer, or
containing a pointer to some aligned memory zone. Most
values are persistent—so dumped then later reloaded through
state files—but some are transient, since it makes no sense
to keep them on disk. Transient values, often transient ob-
jects, include reification of GUI windows or Web widgets,
HTTP connections, ongoing processes, in particular compila-
tion commands of newly generated plugins, etc.. Values are

3By bootstrapping, we mean in the sense of a self-compiling compiler, and
not as in the statistical sense of the term.

4The GPLv3+ code of BISMON, mostly in C, is available on
github.com/bstarynk/bismon/. But REFPERSYS is coded in C++,
only for LINUX/X86-64, on gitlab.com/bstarynk/refpersys and
share almost no code with BISMON.

both ordered and hashable, so fit nicely inside standard C++
containers like std::set or std::unordered_map. Ev-
ery mutable object has a globally unique, fixed, and random
objid, which fits in 16 bytes and is textually represented—in
state files—with a string such as _7VnQtHZ63pA02rCekc.

Immutable values include UTF-8 strings, boxed IEEE 64
bits floats without NaN to stay ordered, tuples of references
to objects, ordered sets of objects, closures -whose code is
represented by some object, and with arbitrary values as closed
values-, and immutable instances.

Mutable objects carry their constant objid, their lock,
their class -which could change at runtime and is an
object-, attributes, components, and some optional smart
std::unique_ptr pointer to the payload of that object.
An attribute associates a key -itself some object reference-
to a value, so attributes are collected in some muta-
ble C++ std::map. The components are organized as a
std::vector of values. The payload belongs to its owning
object and carry extra data, such as mutable hashed sets, class
information -sequence of superclasses and method dispatch
table-, string buffers, opened file or socket handles, GUI or
widgets etc..

REFPERSYS will initially have an ad-hoc IDE—built with
the FLTK toolkit—to just fill the persistent heap and generate
some of its C++ code. This IDE will support the syntax
highlighting, autocompletion and navigating of objects through
their objids.

C. Metaprogramming In REFPERSYS

An essential insight of REFPERSYS is metaprogramming,
practically done by generating C++17 code at
runtime for a Linux system. This is strongly
inspired by previous work, see Pitrat:1996:FGCS,
Pitrat:2009:ArtifBeings, Starynkevitch:2019:bismon-draft,
Starynkevitch-DSL2011, Starynkevitch:2007:Multistage.
The choice of the actual programming language used to
generate code5 in within REFPERSYS is mostly arbitrary
and guided by non-technical concerns: which programming
language is known to all the REFPERSYS team, while being
compatible with a lot of existing open source libraries and
APIs? That programming language happens to be C++
(better than C, because of its containers; also used in
TENSORFLOW or GHUDI), but our expansion machinery is
inspired by MELT code chunks Starynkevitch-DSL2011,
LISP macros Queinnec:1996:LSP or DJANGO templates,
driven by “expert system”-like meta rules (such as in
Pitrat:1996:FGCS) potentially applicable to themselves.

II. DESIGN AND DEVELOPMENT

A. Core Ideas

REFPERSYS is a long term risky research project
with an open science mindset and reproducible experiment
ethics zuboff:2015:big-other, oneil:2016:weapons, and a

5In practice, some C++ code is emitted in a file similar to
/tmp/generated.cc, compiled as a plugin by forking g++ -O -g
-fPIC -shared into a /tmp/generated.so, which is later dlopen-
ed, all by the same process running the ./refpersys executable.

https://thenounproject.com/term/spiral-stairs/956427/
https://thenounproject.com/term/spiral-stairs/956427/
https://github.com/bstarynk/bismon/
https://gitlab.com/bstarynk/refpersys
http://tensorflow.org
https://gudhi.inria.fr/
https://en.wikipedia.org/wiki/Research
https://en.wikipedia.org/wiki/Open_science
https://ropensci.github.io/reproducibility-guide/sections/introduction/

free software licensed under GPLv3+, and targetted only
for LINUX X86-64 computers.. A Linux system with at least
16 Gibytes of RAM, 4 x86-64 cores, and 220 Gibytes of
disk is required. The grand ambition of REFPERSYS is to
become later an infrastructure for some strong AGI system à la
CAIA by Jacques Pitrat Pitrat:1996:FGCS, Pitrat:2009:AST,
Pitrat:2009:ArtifBeings, but before even approaching that
goal a lot of work is required, and REFPERSYS should be
valuable by itself for other less ambitious and more pragmatic
purposes, perhaps some specialized collaborative web server
(GPLv3+) to ease communication between human REFPER-
SYS developers, that is a mix of a wiki, a chat, and a tool for
sharing document with drawings or graphics.

The development of REFPERSYS is (like
the one of bismon, or of CAIA) a slow,
incremental and gradual bootstrapping process
with a meta-programming dormoy:1992:meta,
hernandez-phillips:2019:debugging-bootstrap approach
: features added to REFPERSYS in January 2020 are used to
implement new features worked on a later REFPERSYS in
March 2020.

As every practical software, REFPERSYS targets some de-
fined machines: common Linux distribution running on some
computer6. So the target machine of REFPERSYS is a quite
complete and modern Linux system (such as a recent DEBIAN
or UBUNTU desktop), with many useful packages, and ad-
ministered by some human person. The REFPERSYS system
is published in “source” form, as a set of git versioned7

textual files (e.g. hopefully generated C files8, perhaps some
Makefile or better yet an OMAKE build -most and more
and more of them being generated- or shell files or data files).
Some of these files are generated, and the bootstrapping goal
is to have every git-registered textual file been generated by
REFPERSYS, with a bootstraped approach9 similar to those
of self-hosting compilers.

Within REFPERSYS, we call “source file” any Linux file
which is git-versioned. We hope that more and more of
these source files will be generated by the refpersys
ELF executable program. A significant milestone is the
entire bootstrapping of REFPERSYS, when all files (in
textual form, to stay git-friendly, like text based protocols
are more friendly for developers) can be regenerated by the
refpersys executable, exactly in the same state as they
were previously10 : as a whole, our REFPERSYS system should

6For several years, that computer is a desktop or powerful laptop running
some DEBIAN. Later that could be some “virtual machine” e.g. some DOCKER
container.

7We crucially depend upon git specifically (e.g. GitLab), and porting
REFPERSYS to some other versioning system -or to some other operating
system than LINUX- would be a quite difficult task.

8However, notice that bootstrapped language implementations like Scheme
48 or OCaml are keeping some bytecode form under version control, and
CHICKEN SCHEME is, like bismon, git-keeping generated C files.

9Observe that Linux source distributions like linuxfromscratch.org,
or to a lesser extent GenToo, are also, when considered as a single system,
fully bootstrapped.

10Pedantically, some fixpoint of some very coarse-grained operational
semantics related to abstract interpretation and big step semantics, each
big step being the entire regeneration of the system, inspired by Futurama
projections and partial evaluation.

become a Quine program, and CAIA is already one. So the
build automation tool which compiles REFPERSYS should use
file contents, not modification times to trigger compilation
commands, since a full regeneration of such a bootstrapped
REFPERSYS system will touch all files, without changing the
content of any of them. Hence and very concretely, for building
REFPERSYS the OMake build automation tool is preferable
to GNU make.

For pragmatical reasons, REFPERSYS needs a
good garbage collector (or GC appel:1991:garbage,
wilson:1992:uniprocessorgc, baker:1995:cons,
jones:2016:gchandbook), since fully compile-time GC
mazur:2004:compile are too difficult to implement.
Since multi-core x86-64 machines are very common,
it should take advantage of them, so REFPERSYS
should follow a multi-threaded approach above POSIX
barney:2010:pthreads or C++11 threads. Our GC should
be a precise garbage collector Rafkind:2009:PreciseGC and
we may want to favor, like what was done in GCC MELT
Starynkevitch:2007:Multistage, Starynkevitch-DSL2011,
Starynkevitch-GCCMELTweb, fast allocation of small
memory zones which get quickly disposed of when becoming
dead using a copying generational Cheney-like GC algorithm
wilson:1992:uniprocessorgc. But mixing precise, sometimes
generational GC techniques with multi-threading is a difficult
programming task. But precise-GC friendly programming is
simpler in generated C or C++ code that with hand-written
code (because of explicit management of local GC roots
and write barriers, à la QISH or OCAML: garbage collection
invariants are boring and brittle to maintain in hand-written
code).

Reification is an important concept in REFPERSYS,
including (later) at the knowledge representation level with
semantic networks and frames. REFPERSYS call stacks
are made of call frames known to our garbage collector
(like OCAML’s ones). They could later be copied into
data structures representing some delimited continuations
Reynolds:1993:continuations, Queinnec:2004:ContinWeb,
perhaps even representing and describing control
fouet-starynkevitch:describing-control:1987,
Starynkevitch-1990-EUM, Pitrat:2009:ArtifBeings. This
should also enable introspection, by permitting primitives
inspecting the current call stack, perhaps using Ian Taylor’s
libbacktrace. Also, such an introspection might perhaps
be implemented mitchell:2001:alp with two nearly twin
refpersys processes, one of them driving a gdb process11.

REFPERSYS should (like CAIA and its predeces-
sor MALICE did Pitrat:2009:AST, Pitrat:1996:FGCS,
Pitrat:2009:ArtifBeings) have some expert system shell
kumar:2015:importance-expert-systems, nigro:2008:meta
and meta-rules to “dynamically compile” some subset of
expert system rules and knowledge bases to procedural code
(e.g. with a metaprogramming approach of generating C code,
or libgccjit compiled code, then dlopen(3)-ing that
code and running it at runtime. The manydl.c program show

11Imagine some popen or some g_spawn_async or some
Poco::Process of some gdb refpersys 1234 process debugging
the other one of pid 1234.

https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/licenses/gpl-3.0.html
https://en.wikipedia.org/wiki/Artificial_general_intelligence
http://bootstrappingartificialintelligence.fr/WordPress3/?s=CAIA
https://en.wikipedia.org/wiki/Bootstrapping
http://git-scm.com/
https://en.wikipedia.org/wiki/Makefile
http://projects.camlcity.org/projects/omake.html
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Text-based_protocol
https://www.docker.com/
http://gitlab.org/
https://en.wikipedia.org/wiki/Porting
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://s48.org/
http://s48.org/
https://ocaml.org/
https://en.wikipedia.org/wiki/Bytecode
https://www.call-cc.org/
http://www.linuxfromscratch.org/
https://www.gentoo.org/
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Operational_semantics#Structural_operational_semantics
https://en.wikipedia.org/wiki/Partial_evaluation
https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Build_automation
http://projects.camlcity.org/projects/omake.html
https://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.cppreference.com/w/cpp/thread
https://en.wikipedia.org/wiki/Tracing_garbage_collection#Precise_vs._conservative_and_internal_pointers
https://en.wikipedia.org/wiki/Cheney's_algorithm
http://starynkevitch.net/Basile/qishintro.html
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://en.wikipedia.org/wiki/Reification_(computer_science)
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/Frame_(artificial_intelligence)
https://en.wikipedia.org/wiki/Call_stack
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://en.wikipedia.org/wiki/Delimited_continuation
https://github.com/ianlancetaylor/libbacktrace
https://gcc.gnu.org/onlinedocs/jit/
http://man7.org/linux/man-pages/man3/dlopen.3.html
https://github.com/bstarynk/misc-basile/blob/master/manydl.c
http://man7.org/linux/man-pages/man3/popen.3.html
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://pocoproject.org/docs/Poco.Process.html

that this can practically be done many dozen of thousands of
times on Linux desktops).

REFPERSYS will extensively use metaprogramming tech-
niques, so it should generate code (like CAIA do) in a tran-
spiler approach (in C, C++, -compiled into plugins and later
dynamically loaded with dlopen(3)- maybe also JavaScript
and HTML5 if we decide to have a web user interface).
REFPERSYS could also later use just-in-time compilation li-
braries such as libgccjit. The domain-specific language of
REFPERSYS12 (a declarative one, with “expert system rules”)
should gradually increase its expressiveness and become more
and more declarative and closer to mathematical formalisms.

Most Linux distributions contain lots of useful li-
braries or software components for REFPERSYS long-
term goals, notably machine learning open source libraries
like TENSORFLOW charniak:2019:deep-learning or GUDHI
chazal:2016:high. We might at some point also need messag-
ing libraries like 0MQ, graphical user interfaces libraries à la
QT or more probably web servicing libraries like libonion
or WT. To decrease efforts, we don’t want to rewrite such
libraries inside REFPERSYS (considered as a very high level,
declarative, domain-specific language). Hence, we will need
in REFPERSYS to generate some glue code, like SWIG does,
from some declarative description (probably some frames or
knowledge bases) of the API of these available libraries.

REFPERSYS should at first be orthogonally persistent.
Like BISMON Starynkevitch:2019:bismon-draft it will load
its state (its entire garbage-collected heap) from files at startup,
and will dump its state13 into files at shutdown. These state
files are textual, in JSON format, and git-versioned, and
should be portable to other 64 bits Linux computers. A
manifest file describing the collection of files keeping the state
is probably needed.

B. Development Cycle

Ordinary software projects tend to follow a spiral devel-
opment model boehm:1988:spiral. But REFPERSYS’ devel-
opment follows a strange loop hofstadter:2007:strange-loop,
since it is bootstrapped in an evolutionary prototyping manner.
It is more like a spiral staircase like in figure 1. The initial
(floor) is just a persistent system, and we gradually add new
code implementing more features (first entirely hand-written,
later more and more parts of it replaced by REFPERSYS
generated code). Of course the fun is in replacing existing
hand-written code (or low-level DSL) by more expressive
and generated one. So we will continuously rewrite past
formalizations as a more clever and expressive ones, taking
more and more advantage of REFPERSYS whole-system intro-
spective abilities. All of EURISKO Lenat:1983:Eurisko, CYC
Lenat:1991:ev-cycl and SELF14 chambers:1991:efficient (or

12That domain-specific language has to be defined and implemented in a
bootstrapped manner.

13In a manner inspired by SBCL save-lisp-and-die primitive, or
POLYML export primitive, or marshalling facilities of OCAML or PYTHON
pickle module.

14SELF was even able (in hours of CPU time) to redefines its integers -even
for arithmetic used inside its compiler- as bignums.

even IO or SMALLTALK) systems and their incremental devel-
opment process are inspirational.

The first significant milestone of REFPERSYS should be
the ability to re-generate all its textual source files (and maybe
even git add thengit commit them). That would require
first implementing some simple template based machinery15,
withe the ability, like QUINE programs do, to regenerate
all REFPERSYS source code (e.g. in C++, a Makefile,
etc...). Actually REFPERSYS needs to conceptually have self-
modifying code Tschudin:2005:HarnessingSC, practically
implemented by systematically doing most function calls
through indirect function pointers (which gets updated with
dlsym(3)).

C. Metaprogramming and introspection approach
Metaprogramming is defined in Wikipedia as “a

programming technique in which computer programs
have the ability to treat other programs as their data.
It means that a program can be designed to read,
generate, analyze or transform other programs, and
even modify itself while running”. That design idea is
central to many Artificial Intelligence systems and AI
inspired languages16 and is also common in software
engineering17 Lenat:1983:Eurisko, Lenat:1983:theory,
Lenat:1991:ev-cycl, Pitrat:1996:FGCS, Pitrat:2009:AST,
Pitrat:2009:ArtifBeings, Pitrat:blog, Queinnec:1996:LSP,
Queinnec:2004:ContinWeb, Starynkevitch-1990-EUM,
Starynkevitch-DSL2011, Starynkevitch-GCCMELTweb,
Starynkevitch:2007:Multistage,
Starynkevitch:2019:bismon-draft,
Tschudin:2005:HarnessingSC, abelson:1996:sicp,
briot:1987:uniform, chambers:1991:efficient,
cointe:1987:metaclasses, dormoy:1992:meta,
fouet-starynkevitch:describing-control:1987,
greiner:1980:representation,
hernandez-phillips:2019:debugging-bootstrap,
hofstadter:2007:strange-loop, kay:1996:early-smalltalk,
kelsey:1998:r5rs, kumar:2015:importance-expert-systems,
matthews:2005:operational, mazur:2004:compile,
nigro:2008:meta, queinnec:2003:lisp,
Starynkevitch:2009:grow, serrano:1995:bigloo. Generating
some “source” code at build time is usual practice, advocated
also by the NINJA build system, and theorized (around 1930,
before even computers existed) in the CHURCH-TURING
thesis. Related concepts include the famous (but undecidable)
halting problem (whose proof involves a metaprogramming
approach Hofstadter:1979:GEB), hygienic macros, and
Rice’s theorem.

Practically speaking abelson:1996:sicp, metaprogramming
is easier achieved by explicitly representing (maybe incom-
plete) code with abstract syntax trees (or AST), maybe with

15Perhaps inspired by simple designs like DJANGO tempates, but driven by
frame-based REFPERSYS objects.

16See also SCHEME 48, SBCL, RUST, even C++ templates, CHICKEN
SCHEME, METAOCAML, the ECLIPSE Constraint Programming System,
RASCAL, NEMERLE, COCCINELLE, OCSIGEN, GNU PROLOG, CLIPS, GPP,
SWIG, ANTLR, IBURG, Gnu BISON, etc . . .

17A typical example is the GCC compiler, or AUTOCONF, and transpiler
approaches

https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://gcc.gnu.org/onlinedocs/jit/
https://www.tensorflow.org/
https://gudhi.inria.fr/
https://zeromq.org/
http://qt.io/
https://github.com/davidmoreno/onion/
https://www.webtoolkit.eu/wt
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Domain-specific_language
http://swig.org/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Memory_management#HEAP
http://json.org/
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/Strange_loop
https://en.wikipedia.org/wiki/Software_prototyping#Evolutionary_prototyping
https://en.wikipedia.org/wiki/Eurisko
https://en.wikipedia.org/wiki/Cyc
https://en.wikipedia.org/wiki/Self_(programming_language)
http://www.sbcl.org/manual/index.html#Saving-a-Core-Image
https://www.polyml.org/
https://www.polyml.org/documentation/Reference/PolyMLStructure.html#export
https://en.wikipedia.org/wiki/Marshalling_(computer_science)
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://iolanguage.org/
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Quine_(computing)
http://man7.org/linux/man-pages/man3/dlsym.3.html
https://en.wikipedia.org/wiki/Metaprogramming
https://ninja-build.org/
https://en.wikipedia.org/wiki/Church-Turing_thesis
https://en.wikipedia.org/wiki/Church-Turing_thesis
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Hygienic_macro
https://en.wikipedia.org/wiki/Rice's_theorem
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://docs.djangoproject.com/en/2.2/topics/templates/
http://s48.org
http://sbcl.org/
http://https://www.rust-lang.org/
https://en.cppreference.com/w/cpp/language/templates
https://www.call-cc.org/
https://www.call-cc.org/
 http://okmij.org/ftp/ML/MetaOCaml.html
http://eclipseclp.org/
https://www.rascal-mpl.org/
http://nemerle.org/
http://coccinelle.lip6.fr/
https://ocsigen.org/
http://www.gprolog.org/
http://www.clipsrules.net/
https://logological.org/gpp
http://swig.org/
https://www.antlr.org/
https://github.com/drh/iburg
https://www.gnu.org/software/bison/
http://gcc.gnu.org
https://en.wikipedia.org/wiki/Autoconf
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Source-to-source_compiler

some holes for metavariables for their later explicit substitu-
tion, in the spirit of DJANGO templates or of COMMON LISP
macros or SCHEME macros. A practical way to implement
such a template machinery for generating C or C++ code is
given by GCC MELT code chunks Starynkevitch-DSL2011,
Starynkevitch-GCCMELTweb, Starynkevitch:2009:grow,
Starynkevitch:2007:Multistage, where a piece of C (or
C++) code with holes (or metavariables) is passed through
a “macro-string”. Later, such a macro-string or code chunk
can be expanded by filling the holes, that is expanding the
metavariables (e.g.$msg) appropriately. Such an expansion
might be recursive, since some hole filling (or metavariable
replacement) could in turn trigger expansions of other macro-
strings. In practice, REFPERSYS will use similar code chunks
and macro-expansion to generate its C (or C++) code, and
some initial ad-hoc integrated development environment (or
IDE) will have to be coded, handling passively some persistent
store. The expansion will be done through some scripting
language (or domain specific language, a.k.a. DSL) which has
to be implemented inside our IDE.

Metaprogramming involves code generation (using source-
to-source ahead-of-time and/or just-in-time18 compilation
techniques Aho:2006:dragon-book, and in REFPERSYS is
useful for many tasks, such as generating the garbage col-
lection support routines for scanning or forwarding, and the
loading and dumping routines needed for persistence (in the
spirit of RPCGEN, SWIG and other serialization frameworks).

In REFPERSYS, metaprogramming is often and
practically achieved (like in Starynkevitch-DSL2011,
Starynkevitch:2019:bismon-draft, Pitrat:1996:FGCS,
Pitrat:2009:ArtifBeings and our manydl.c example
program), by generating some C or C++ code in a
temporary file19 like /tmp/rpsgen123.c, compiling
that file drepper:2011:write-shared-lib into a generated
plugin /tmp/rpsgen123.so by running a process such
as gcc -fPIC -Wall -O -g -shared /tmp/rpsgen123.c

-lsomething -o /tmp/rpsgen123.so and waiting for its
successful completion, then dlopen(3)-ing that newly
generated /tmp/rpsgen123.so, in a manner compatible
with our garbage collection and agenda invariants. We might
later care about carefully dlclose(3)-ing that generated
plugin, but in practice we accept some limited virtual
memory plugin leak, and we could just dump appropriately
our persistent state by mentioning in some generated Manifest
file those plugins which should be saved (as generated C
code) with the state.

Reflection is “the ability of a process to examine, in-
trospect, and modify its own structure and behavior” and
also, for self-reflection, the capacity “ to exercise introspec-
tion and to attempt to learn more about their fundamen-
tal nature and essence”. (Wikipedia). It is advocated (in
Pitrat:2009:ArtifBeings) that a similar approach is (painfully)
achievable in AI systems, and it would need both clever
backtracking and backtracing techniques. Libraries such as

18Several JIT compilation libraries exist, notably libgccjit provided
inside recent GCC compilers.

19There are practical reasons to generate these temporary files outside of
/tmp/, which gets cleaned at reboot.

Ian Taylor’s libbacktrace (which wants most of the code
to be compiled with DWARF debugging information20) are
helpful.

Our precise garbage collector (see §?? below and
rafkind:2009:precise-gc, or QISH) wants local variables hold-
ing garbage collected pointers to be known to the GC. In
practice, the REFPERSYS call frame is some explicit local
struct named _ in generated C code21. Such explicited local
frames can often be optimized by GCC or g++ (invoked with
-O2).

As suggested by Pitrat (see Pitrat:1996:FGCS,
Pitrat:2009:AST, Pitrat:2009:ArtifBeings), call stack
reflection and backtrace is the elementary brick of more
sophisticated introspection techniques. At some point, our
REFPERSYS system should inspect its call stack and may
take decisions after that. A typical approach would be to run
such introspection once in a while (e.g. every 0.1 second on
the average22, in the inference engine of some expert system
or knowledge base component of REFPERSYS.

Since we aim to be able to re-generate most (and hope-
fully all) of REFPERSYS code (in C or in C++), having
simple coding conventions does matter: every REFPERSYS-
defined C or C++ identifier should start with rps_ in lower,
upper, or mixed case (e.g. also RPS_ or Rps_). Every C
or C++ function, even static inline ones appearing
in header files, has its name starting with rps_ and is
globally unique to the entire refpersys program. The C
(or C++) code should be automatically indented23 using Gnu
INDENT or ASTYLE. Every named struct (in C) should
have its tag matching rps_*st. Every typedef-ed data
type should have its name matching rps_*t. Every named
enum should have its tag matching rps_*en and the various
enumerated values like RPS_*. Even in cases the C (or the
C++) language allows several name spaces, we don’t use
that facility. Hence we avoid coding the common typedef
struct rpsfoo_t rpsfoo_t; but prefer instead (in-
spired by GTK) coding typedef struct rps_foo_st
rps_foo_t. Of course, names of local variables (that is
automatic variables with their lexical scope limited to some
small C or C++ block) could be as short as a single letter
such as i. In general, our C or C++ code is written with the
hope of being easily able to regenerate it.

D. The persistent heap

When REFPERSYS is running in some multi-threaded
LINUX process, the REFPERSYS persistent heap is (like Bis-
mon’s one Starynkevitch:2019:bismon-draft) semantically

20In practice we should compile our or other C or C++ code with both
-O2 -g passed while invoking GCC or g++, and this is indeed possible and
practically works well enough.

21Like Bismon does, see its LOCAL_BM macro. See also the CAMLparami
and CAMLlocalj C macros of OCAML, and the Py_VISIT and
Py_DECREF and other macros of PYTHON, the foreign function interface
of SBCL, etc . . .

22Timing considerations are essential, practically speaking, in REFPERSYS.
See time(7) man page.

23With the social convention that REFPERSYS contributors are running
omake indent or make indent before every git commit!

https://en.wikipedia.org/wiki/Metavariable
https://en.wikipedia.org/wiki/Explicit_substitution
https://en.wikipedia.org/wiki/Explicit_substitution
https://docs.djangoproject.com/en/2.2/topics/templates/
https://lispcookbook.github.io/cl-cookbook/macros.html
https://lispcookbook.github.io/cl-cookbook/macros.html
https://en.wikibooks.org/wiki/Scheme_Programming/Macros
https://gcc.gnu.org/wiki/MELT tutorial
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/RPCGEN
http://swig.org/
https://en.wikipedia.org/wiki/Serialization
https://github.com/bstarynk/misc-basile/blob/master/manydl.c
http://man7.org/linux/man-pages/man3/dlopen.3.html
http://man7.org/linux/man-pages/man3/dlclose.3.html
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Self-reflection
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stack_trace
https://gcc.gnu.org/onlinedocs/jit/
http://gcc.gnu.org
https://github.com/ianlancetaylor/libbacktrace
https://en.wikipedia.org/wiki/DWARF
http://starynkevitch.net/Basile/qishintro.html
https://en.wikipedia.org/wiki/Inference_engine
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Knowledge_base
https://www.gnu.org/software/indent/
https://www.gnu.org/software/indent/
http://astyle.sourceforge.net/
http://gtk.org
https://en.wikipedia.org/wiki/Local_variable
https://en.wikipedia.org/wiki/Automatic_variable
https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scoping
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Process_(computing)
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html
http://github.com/bstarynk/bismon/
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.htm
https://docs.python.org/3/extending/
http://www.sbcl.org/manual/index.html#Foreign-Function-Interface
http://www.sbcl.org/manual/index.html#Foreign-Function-Interface
http://man7.org/linux/man-pages/man7/time.7.html

like the memory heap of most dynamic programming lan-
guages (such as PYTHON, GUILE, GO, SBCL, etc . . .). We
strongly want to avoid any GIL, but multi-threaded precise
efficient garbage collector implementations are quite diffi-
cult to code. However, notice that the persistence (dump
as textual git-versioned disk files) of a heap uses al-
gorithms similar to those of copying garbage collectors
wilson:1992:uniprocessorgc, jones:2016:gchandbook.

Conceptually, REFPERSYS tracing precise garbage collector
should traverse the graph of references to REFPERSYS values,
starting from global or transient roots and local variables inside
call frames of working threads. Each REFPERSYS value (im-
mutable or object) is represented by a machine word (aligned,
64 bits) which usually contains a pointer, but sometimes some
tagged integer. Immutable values are often “small” (typically,
less than a few dozens of words of memory, sometimes a lot
more) but objects are necessarily heavier since they contain
some kind of lock. closures are immutable values, containing
an object representing and giving their function code (as a
C function pointer inside that object), and additional closed
values. In practice our garbage collector processes not only
values (either immutable values or objects), but also quasi-
values : these are a single memory zone which is allocated
using the garbage collector allocation protocol, traversed by
the GC when something points to it, appears inside other
values (in particular, as payload of objects), but by convention
should not be passed as a genuine value. Some values (or
objects) may be dead and should eventually be reclaimed by
the garbage collector.

Values, either immutable values or changeable objects, in
REFPERSYS can be either persistent (dumped in textual state
files24, then reloaded at restart of refpersys process) or
transient (that is, not dumped and not appearing in state files).

The persistence machinery - the dump - is conceptually
simple and could run in several threads: start from global roots
and traverse the memory graph but ignore transient objects
and transient roots and memoize previously seen persistent
objects. Of course, objects should not be persisted twice, and
are referred by the object id or objid in the state files produced
by the dump. That objid is alphanumeric, randomly generated
and so hopefully globally unique -like _2om48kc3k5R02d3ktW

for example- in our current implementation; exactly like
UUIDs should be. Notice the conceptual similarity between
REFPERSYS dump algorithm and its tracing garbage collector:
both are traversing the graph of references inside the heap.

The global roots are objects. Use the C++
functions rps_each_root_object to iterate
on them, rps_add_root_object to add one,
rps_remove_root_object to remove one,
rps_is_root_object to test if an object is a global
root, rps_set_root_objects to get the set of all of
them, andrps_nb_root_objects to get their number. Of
course, some global roots can be transient objects, but all of
them are roots for the garbage collector.

24In the current implementation, REFPERSYS state files should ap-
pear under persistore/ subdirectory, and the manifest file is
rps_manifest.json at the top directory.

The initial loading machinery (recreating a suitable heap -
and rebuilding a graph of references inspired by figure ??,
without any transient stuff) from its previous dumped state)
is first creating empty all objects, then later filling each of
them. However, for efficiency, we may want to load the heap
in parallel, using several loader threads. This could be easy if,
after having created all objects as empty, and loaded plugins
(i.e. dlopen-ing many *.so files), REFPERSYS processes
each state file in a potentially different loading thread.

III. FUTURE POTENTIAL APPLICATIONS

The REFPERSYS project needs real-life applications, which
could take advantage of its flexible object model, persistence,
reflexivity and metaprogramming abilities. Future use-cases
that are considered (within the next five years, if users are
found) could include:

• representing wisely the documention of REFPERSYS, and
generating some parts of it (in PDF or HTML format),
probably starting a few LATEX-related Linux processes and
generating some *.tex or *.html files.

• assistance and software tool to help building, managing
and technically coordinating a cooperating research con-
sortium, such as European H2020 or future HorizonEu-
rope25 projects. Since the typical research consortium is
made of many partner organizations, involves dozens of
persons with various interests and skills.

• during the current Covid health crisis (and ignoring
important legal obstacles or ethical concerns related to
privacy issues - both should be handled by humans),
managing data and information about Covid handling in
a city: the set of tested persons, their medical results
(represented as REFPERSYS objects, the set of testing
centers, the databases holding test results, etc...

• in a complex industrial corporation (e.g. some automobile
maker), facilitate the connection between existing soft-
ware subsystems (following the “digital twins” dream),
include finite elements simulation code, factory planning,
etc. REFPERSYS could then help to build a semi-coherent
and semi-automatic model of what is actually going on
in such factories. Industrial parts, simulation software,
databases could be represented as REFPERSYS objects

• etc...

IV. CONCLUSION

We have discussed how we are trying to develop REFPER-
SYS organically, using metaprogramming techniques to even-
tually build a fully bootstrapped Quine system. Our approach
is to gradually replace hand-written code with increasingly
expressive generated code, relying on the growing metapro-
gramming and reflective properties of the system. See also
starynkevitch:2019:refpersys-design.

ACKNOWLEDGMENT

The authors would like to thank Nimesh Neema for testing
and minor contributions to REFPERSYS...

25See ec.europa.eu/info/horizon-europe-next-research-and-innovation-framework-programme_en

https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://python.org/
https://www.gnu.org/software/guile/
https://golang.org/
http://sbcl.org/
https://en.wikipedia.org/wiki/Global_interpreter_lock
https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://en.wikipedia.org/wiki/Tagged_pointer
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://ec.europa.eu/info/horizon-europe-next-research-and-innovation-framework-programme_en

Basile Starynkevitch Lives in France

Abhishek Chakravarti Lives in India

Our draft git ID is 6f6c8f8d1f2a6f21.... Photos and biographies
will be added later. Thi draft has been LATEX-ed on Mon 31 Aug 2020

11:56:01 AM MEST.

	Introduction
	A Staircase Development Model
	Initial Architecture of RefPerSys
	Metaprogramming In RefPerSys

	Design and Development
	Core Ideas
	Development Cycle
	Metaprogramming and introspection approach
	The persistent heap

	Future potential applications
	Conclusion
	Biographies
	Basile Starynkevitch
	Abhishek Chakravarti

